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Abstract

In this paper an exact analytical self-similar solution of the thermo-fluid dynamic field arising in an impulsively accelerated flow over a
flat plate is proposed. The plate is considered of infinite thickness and the thermal field is computed both in the fluid and in the solid with
the temperature and the heat flux unknown at the solid–fluid interface (conjugated heat transfer). The values of the initial temperatures
in the solid and in the fluid are different constants. The solution, obtained in the incompressible case, is extended to compressible flows by
the Stewartson–Dorodnitsin transformation. The influence of the non-dimensional parameters governing the phenomenon is discussed
with particular emphasis to the simple expressions of the interface temperature and heat flux.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In thermo-fluid dynamic problems, the boundary condi-
tions for the thermal field are usually assigned at the solid
walls in terms of temperature or heat flux. However, both
temperature and heat flux at the solid wall are in general
unknowns and should be determined by simultaneous
and coupled solutions of the thermo-fluid dynamic equa-
tions in the fluid and the energy equation in the solid
enabling the continuity of the temperature and heat flux
at the solid–fluid interface. This problem is known in liter-
ature as Conjugated heat transfer after Perelman [1]. These
phenomena are relevant in many applications such as aero-
space and cooling technologies, see [2] for a review on the
subject and further literature. Moreover conjugated effects
should be carefully considered for avoiding misleading con-
clusions in experimental or numerical analysis involving
thermal effects, see [3] for an example.
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Because of the complexity of the problem, conjugated
heat transfer is usually analyzed by numerical methods
[4] or by approximate solutions [5,6]. Fundamental theoret-
ical works were proposed in [7,8], but they did not provide
quantitative results for practical applications. However, we
recently showed the possibility to obtain, at least for a sim-
ple geometry, an analytical exact solution [9]. In that paper
the solution was proposed in the case of an impulsively
accelerated flow from rest to a constant speed over an infi-
nite plate of finite thickness in the case of imposed temper-
ature or adiabatic condition on the unwetted side of the
plate, also including the effects of dissipation of kinetic
energy in the fluid. The solutions were obtained by apply-
ing the Laplace transform technique and could be extended
to the case of compressible flow by the Stewartson–Dorod-
nitsin transformation.

A very interesting and more general result of the paper is
that the exact coupling condition of the thermal field in the
fluid and in the solid can be obtained with simple algebraic
equations instead of the complex integral equations pro-
posed in previous theoretical works. This result gives the
possibility to search further analytical solutions of conju-
gated problems of practical interest by adopting standard
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Nomenclature

E U 2
1=ðcpT1Þ

Ec Eckert number
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=Pr � 1

p
L reference length
Nu Nusselt number
Nu0 Nusselt number of a plate with infinitely small

thickness
Pr Prandtl number
Re Reynolds number
T temperature
U ; V Stewartson–Dorodnitsin transformation of

velocity components
U1 freestream velocity imposed at initial time
Zh;Zp; Z self similar functions
cp specific heat of the fluid at constant pressure
cs specific heat of the solid
hf, hs scale factors of self-similar solutions in the fluid

and in the solid
p ðkf=ksÞ

ffiffiffiffiffiffi
Re
p

t time
tfs as=ðU1LÞ
u; v velocity components
y spatial coordinate in the fluid normal to the so-

lid–wall interface
K

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qf cpkf

p
=
ffiffiffiffiffiffiffiffiffiffiffiffi
qscsks

p
, thermal activity ratio

Xh;Xp; �X time scale factors in self-similar solutions
a thermal diffusivity
g non-dimensional spatial coordinate in the fluid

normal to the solid–wall interface
k thermal conductivity
m kinematic viscosity of the fluid
q density
h non-dimensional temperature in the fluid
�h non-dimensional temperature in the solid
haw adiabatic wall temperature over a plate of zero-

thickness in impulsive Rayleigh flow
s non-dimensional time
n spatial coordinate in the solid normal to the so-

lid–wall interface
�n non-dimensional spatial coordinate in the solid

normal to the solid–wall interface
f similarity variable

Subscripts

e position in the solid infinitely far from the solid–
fluid interface

f fluid
s solid
w solid–fluid interface
1 freestream condition

Fig. 1. Sketch of the physical problem for t > 0.
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and straightforward techniques for the solution of partial
differential equations.

In this note we verify the possibility to obtain unsteady
self-similar solutions when the plate is of infinite thickness,
as suggested by the analysis in [9]. This assumption can be
applied for very small time values or when the length scale
is really large such as, for instance, the thermal boundary
layer of the atmosphere coupled with the ground in envi-
ronmental applications. Instead of applying the Laplace
transform technique we here derive the solution by the
standard search for self-similar solutions. We propose the
solution in the case of assigned temperature in the solid
infinitely far from the solid–fluid interface. The analytical
solution is straightforward and in explicit form. The results
are discussed by analyzing the impact of the conjugated
effects (also comparing them with the solution for the case
of plate of infinitely small thickness) and by showing the
obtained temperature profiles, both in the fluid and in the
solid, in terms of the involved parameters.

2. The physical problem and solution

We consider an infinite plate (in both directions) of infi-
nite thickness, wetted by a fluid on one side which is impul-
sively accelerated from rest to a constant speed U1 at the
initial time t ¼ 0. The problem is one-dimensional in space;
the thermo-fluid dynamic field in the fluid depends on t and
on y, the spatial coordinate orthogonal to the plate, with
the origin placed at the solid–fluid interface and pointing
towards the fluid. The temperature field in the solid
depends on t and on n, the spatial coordinate orthogonal
to the plate, with the origin placed at the solid–fluid inter-
face and opposite direction with respect to y, see Fig. 1.

The initial temperature field in the fluid T fðy; tÞ is uni-
form, with T fðy; 0�Þ ¼ T1. In the solid the initial tempera-
ture field T sðn; tÞ is also uniform with a different
temperature value T sðn; 0�Þ ¼ T e. We assume that an
incompressible, viscous and laminar flow with constant
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properties (kinematic viscosity m and thermal conductivity
kf ) arises, therefore the dynamic field is not coupled with
the thermal one. The boundary conditions for the velocity
are the matching with the freestream value for y !1 and
the no-slip condition on the plate. In this case the solution
of the Navier–Stokes equations is given by the well known
Rayleigh flow, see [10], p. 137:

u ¼ erf f; ð1Þ

where u is the non-dimensional velocity component parallel
to the plate referenced to U1; erf z ¼ ð2=

ffiffiffi
p
p
Þ
R z

0
e�v2

dv
specifies the error function [11], and f ¼ y=

ffiffiffiffiffiffi
4mt
p

¼
g=ð

ffiffiffiffiffi
4s
p
Þ is the similarity variable of the dynamic field with

g ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1=ðmLÞ

p
¼ y

ffiffiffiffiffiffi
Re
p

=L; s ¼ tU1=L (L is a reference
length and Re the Reynolds number).

Denoting h ¼ ðT f � T1Þ=T1 and �h ¼ ðT s � T1Þ=T1
respectively the non dimensional temperature in the fluid
and in the solid, the energy equations in the fluid and in
the solid are:

oh
os
� 1

Pr
o

2h
og2
¼ E

ou
og

� �2

; ð2aÞ

o�h
os
¼ tfs

o2�h

o�n2
; ð2bÞ

where E ¼ U 2
1=ðcpT1Þ (cp is the specific heat at constant

pressure of the fluid), Pr is the Prandtl number, �n ¼ n=L
and tfs ¼ as=ðU1LÞ (as is the thermal diffusivity in the
solid). The parameter E is strictly connected with the
Eckert number ðEcÞ since Ec ¼ ET1=DT ref . The initial con-
ditions are hðg; 0Þ ¼ 0 for the fluid and �hð�n; 0Þ ¼ �he for the
solid. A boundary condition for the fluid is hðg; sÞ ! 0 for
g! þ1. Similarly, for the solid we have �hð�n; sÞ ! �he ¼
T e=T1 � 1 for �n! þ1. Finally the continuity of the tem-
perature and of the heat flux at the solid–fluid interface
must be imposed:

hð0; sÞ ¼ �hð0; sÞ; ð3aÞ

p
ohð0; sÞ

og
¼ �

�ohð0; sÞ
o�n

; ð3bÞ

where p ¼ ðkf=ksÞ
ffiffiffiffiffiffi
Re
p

(ks is the thermal conductivity in the
solid).

The lack of a length scale suggests to look for self-sim-
ilar solutions of these equations. It is convenient to study
the linear energy equation in the fluid in the form
h ¼ XhðsÞZhðffÞ þ XpðsÞZpðffÞ with ff ¼ g=hfðsÞ, where
the first and the second term are respectively the solution
of the associated homogeneous equation and a particular
solution of the complete equation. Similarly the solution
of the homogeneous energy equation in the solid is put in
the form �h ¼ �XðsÞ�ZðfsÞ with fs ¼ �n=hsðsÞ. Then the analysis
of the self-similar solutions follows by the standard tech-
niques. In this case the boundary conditions for the fluid
and the solid can be satisfied together with the matching
conditions Eq. (3) only if XhðsÞ, XpðsÞ and �XðsÞ are con-
stant values, which implies that the interface temperature
does not depend on time. Therefore Eq. (3a) reduces to
hð0; sÞ ¼ �hð0; sÞ ¼ hw ¼ T w=T1 � 1, which is the tempera-
ture at the solid–fluid interface.

In the case of assigned constant wall temperature both
the solutions in the fluid and in the solid are well known.
In the fluid the temperature field is given by (see [13] for
a detailed analysis of this solution):

hðffÞ ¼ hw þ ðhaw � hwÞerf ff �
2

K
Effiffiffi
p
p

Z ff

0

e�v2

erf ðKvÞdv;

ð4Þ
where ff ¼

ffiffiffiffiffi
Pr
p

f;K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=Pr � 1

p
and

haw ¼ 2E
arctan K

pK
ð5Þ

is the adiabatic wall temperature in the case of impulsive
Rayleigh flow over a plate of zero-thickness.

The temperature field in the solid is

�hðfsÞ ¼ ðhw � �heÞð1� erf fsÞ þ �he; ð6Þ
where fs ¼ n=

ffiffiffiffiffiffiffiffi
4ast
p

¼ �n=ð
ffiffiffiffiffiffiffiffiffi
4tfss
p

Þ.
Both solutions are in self-similar form with similarity

variables ff and fs. hw, the temperature at the solid–fluid
interface, is the only unknown; it can be computed impos-
ing that Eq. (3b) is satisfied. Taking into account for Eqs.
(4) and (6), Eq. (3b) reduces to

Kðhaw � hwÞ ¼ hw � �he; ð7Þ
where the thermal activity ratio K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kfqf cp

p
=
ffiffiffiffiffiffiffiffiffiffiffiffi
ksqscs

p
¼

p
ffiffiffiffi
tfs

p ffiffiffiffiffi
Pr
p

has been introduced. K is the ratio between the
thermal effusivities in the fluid and in the solid (qf and qs

are the density in the fluid and in the solid, cs is the specific
heat in the solid). Then, the interface temperature is:

hw ¼
K

1þ K
haw þ

1

1þ K
�he: ð8Þ
3. Analysis of the results

3.1. Interface temperature

Eq. (8) shows that the interface temperature is constant

even if the problem is unsteady and is given by an average
of the adiabatic wall temperature in the fluid and the
asymptotic temperature in the solid weighted by the ther-
mal activity ratio K.

This result is surprising at a first sight. However the
present analysis is in agreement with the results proposed
in [9] for the plate of finite thickness, where the interface
temperature is not constant with time. Nonethless the time
derivative of the interface temperature is zero for s! 0þ

and its value is coincident with Eq. (8): the interface tem-
perature becomes constant when the thickness of the plate
becomes infinite.

In addition, there is an analogy with a different problem:
the case of two semi-infinite solids with a flat interface and
different temperatures at the initial time, see for instance
[12], pp. 87–88; the difference is that here we have a produc-
tion term in the energy equation of the fluid due to the



Fig. 2. Dhw=�he versus K for haw=�he ¼ 0:1; 1; 2; 10. �: air–aluminium; �:
water–aluminium; M: water–iron; and �: mercury–glass.
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dissipation of kinetic energy. In both cases the solutions are
self-similar and the interface temperature is constant with
time even if the problem is unsteady. The presence of a
transition region for the interface temperature requires a
finite thickness of the solid.

Eq. (8) provides the wall temperature for t > 0, which,
on the other side, is 0 for t < 0, therefore there is a jump
in time at t ¼ 0; this discontinuity is driven by the presence,
at the initial time, of a singularity in the temperature distri-
bution and in the dynamic field. hw is ruled by the param-
eter K. Some typical values of K for different solid–fluid
combinations are shown in Table 1. In the table K ranges
from �10�4 to 10.

The temperature jump in the fluid at the initial time is
given by Eq. (8). Defining Dhw ¼ hw � �he, the temperature
jump in the solid is

Dhw

�he

¼ K
1þ K

haw

�he

� 1

� �
: ð9Þ

Eqs. (8) and (9) show that the initial temperature jump only
depends on K, on haw, therefore on Ec and Pr, and on
T e=T1. In particular, when Ec ¼ 0 (the dissipation of ki-
netic energy is negligible) haw ¼ 0 and the interface temper-
ature does not depend on the dynamic field in the fluid, but
only on its physical properties (through K).

The conjugated effects on the interface temperature can
be easily quantified by Eq. (9). This relation is plotted in
Fig. 2 with results evidenced for typical solid–fluid combi-
nations. The conjugated effects become relevant for large
values of K.

If we consider the case in which, at the initial time, the
fluid is not accelerated from rest: uðg; sÞ ¼ 0 8s > 0, the
energy field in the fluid is also governed by the heat equa-
tion and the temperature field has the same form of the
solution in the solid, Eq. (6). In this case the continuity
of the heat flux at the solid–fluid interface provides

hw ¼
1

1þ K
�he: ð10Þ

This relation shows that the interface temperature arising
when the fluid is impulsively accelerated from rest is exactly
equivalent to the temperature arising at the interface be-
tween two semi-infinite solids with flat interface and at dif-
ferent initial temperatures, provided that the initial
temperature in the fluid is replaced by the adiabatic wall
temperature. An interesting consequence is that, during
Table 1
Values of the thermal activity ratio K for different solid–fluid combinations

Mercury ð�10�1Þ Air ð�10�4Þ W

Aluminium 1.79 2.57
Iron 5.51 7.92
Glass 27.9 40.2 1
Oak wood 61.1 87.9 2
Concrete 29.1 41.9 1
this self-similar stage, conduction is more efficient than
convection in a cooling system.
3.2. Interface heat flux

The heat flux study is proposed in terms of the Nusselt
number Nu ¼ � L

DT ref

oT
oy

� �
w

(DT ref ¼ T e � T1 and
L ¼ U1t) given by:

Nu
Re
¼ �

ffiffiffiffiffi
Pr
p

2�he

oh
off

� �
w

¼
ffiffiffiffiffi
Pr
p
ffiffiffi
p
p ðhw � hawÞ

�he

¼
ffiffiffiffiffi
Pr
p
ffiffiffi
p
p
ð1þ KÞ 1� haw

�he

� �
: ð11Þ

For �he > 0 the fluid is cooling or heating the plate respec-
tively for haw < �he and haw > �he. For �he < 0, as obvious,
the fluid is always heating the plate. Eq. (11), compared
with the analogous relation proposed in [13] for the plate
of infinitely small thickness (�he in place of hw), allows for
an exact evaluation of conjugated effects on the heat flux.
In particular, the conjugated effects reduce the heat flux
of a factor ð1þ KÞ. This result is evidenced in Fig. 3.
Nu=Nu0 is plotted versus K, where Nu0 specifies the Nusselt
number in the case of infinitely small thickness of the plate.
In terms of both temperature and heat flux at the wall, the
ater ð�10�2Þ Glycerin ð�10�2Þ Light oil ð�10�1Þ
7.09 4.20 0.210

21.9 12.9 0.647
11 65.7 3.28
43 144 7.18
16 68.5 3.42



Fig. 3. Nu=Nu0 versus K. �: air–aluminium; �: water–aluminium; M:
water–iron; and �: mercury–glass.
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conjugated effects are negligible for K� 1, but, again, they
become more and more significant as K increases.
Fig. 4. Temperature distribution in the fluid h (a) and in the solid �h (b) for
K ¼ 0:01; 0:1; 1. �he ¼ 0:3, E ¼ 0:3, Pr ¼ 0:72. ff ¼

ffiffiffiffiffi
Pr
p

g=
ffiffiffiffiffi
4s
p

, fs ¼
�n=

ffiffiffiffiffiffiffiffiffi
4tfss
p

.

3.3. Temperature profiles

The self-similar temperature profiles in the fluid and in
the solid, providing the temperature for whatever value
of time and space position, are plotted in Fig. 4 for different
values of K. When the conjugated effects are negligible
ðK! 0Þ, the temperature in the solid is approaching an
uniform distribution �h ¼ �he. For fs ¼ 1:82 it is erf fs ¼
0:99, therefore the thickness in the solid in which tempera-
ture variations are significant for a given K ð> 1%Þ is
b ¼ 3:64

ffiffiffiffiffiffi
ast
p

. This expression also gives the possibility to
identify, in the case of a plate of finite thickness, the time
interval in which the approximation of infinite thickness
is valid.

The influence of the Eckert number Ec ¼ E=�he is shown
in Fig. 5. As Ec increases, the typical effects of the dissipa-
tion of kinetic energy appear: the plate is heated even for
T1 < T e.
3.4. Compressible flow

Also in this case compressibility effects can be taken into
account by the Stewartson–Dorodnitsin transformation,
see [14], p. 246. Assuming m=m1 ¼ kf=k1 ¼ q1=qf ¼
T f=T1 the unsteady transformation is

g ¼
ffiffiffiffiffiffi
Re
p

L

Z y

0

qf

q1
d�y; U ¼ u; V ¼ qf

q1
vþ u

og
os
þ u

og
oX

;

ð12Þ

where v is the non-dimensional velocity component normal
to the wall and X is the non-dimensional spatial coordinate
along the plate. U and V are the transformed velocity com-
ponents. This transformation decouples the dynamic field
from the thermal one. U is again given by the error func-
tion, although the physical velocity distribution along y is
modified by the relations (12). The V component in the
transformed plane is still zero, while the physical velocity
component v is given by

v ¼ �u
og
os

q1
qf

: ð13Þ

The energy equation has the same expression of Eq. (2a)
with U in place of u and E ¼ ðc� 1ÞM2

1, where c is the
ratio between the specific heats and M1 is the freestream
Mach number. However, it should be noted that in this
case the physical normal velocity is not zero and the flow
is no more parallel, see [15,16] among others, for a detailed
discussion of the compressible Rayleigh flow.



Fig. 5. Temperature distribution in the fluid h (a) and in the solid �h (b) for
Ec ¼ �1; 1; 5. K ¼ 0:1, Pr ¼ 0:72. ff ¼

ffiffiffiffiffi
Pr
p

g=
ffiffiffiffiffi
4s
p

, fs ¼ �n=
ffiffiffiffiffiffiffiffiffi
4tfss
p

.
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4. Conclusions

Analytical solutions can provide a deeper understanding
of physical phenomena; the effects of the parameters ruling
the problem are explicit and they are useful test cases for
the validation and verification of numerical methods. In
addition, they can be applied to obtain a quick quantitative
analysis looking at the local or asymptotic behavior of
more complex fields.

Recent results showed the possibility to obtain simple
algebraic conditions in order to exactly model the conju-
gated effects in thermo-fluid dynamic fields: hence, stan-
dard techniques for the solution of partial differential
equations can be adopted for deriving analytical solutions
of problems of practical interest. In the present case, an
exact self-similar solution of the thermal field has been pre-
sented for a flow impulsively accelerated over an infinite
plate of infinite thickness. It has a very simple explicit form.
Present results have been obtained by the standard tech-
nique adopted for the search of self-similar solutions.

The temperature and the heat flux at the solid–fluid
interface are constant with time; the presence of a transi-
tion at the solid–fluid interface requires a finite thickness
of the solid.

The role of the thermal activity ratio K (depending on
the thermal properties of the fluid and of the solid) and
of the adiabatic wall temperature for the impulsive Ray-
leigh flow have been highlighted. The results show how
conjugated effects play an important role when K is not
small and that, at least in the present flow, there is an anal-
ogy with the problem of pure conduction when the asymp-
totic temperature in the fluid is replaced by the adiabatic
wall temperature.

The proposed very simple expressions for the interface
temperature and heat flux can be used in more general
cases when the approximation of infinite thickness can be
applied.
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